Time: October 2, 2015 at 9am to October 3, 2015 at 5pm

Location: Temple University Center City

Street: **1515 Market Street**

City/Town: **Philadelphia, PA 190103**

Website or Map: http://statisticalhorizons.co…

Phone: **610-642-1941**

Event Type: training, seminar

Organized By: Statistical Horizons LLC

Latest Activity: **Aug 14, 2015**

Export to Outlook or iCal (.ics)

Taught by Richard Gonzalez, Ph.D.

This two-day seminar is designed to introduce the R package to those who already have some experience doing statistical analysis with another software package. At the conclusion of the seminar, you should be well equipped to do almost any standard analysis using R.

R has rapidly become a major tool for statistical analysis in both academia and industry. Journal articles on new statistical procedures often include R code so that readers can use the new technique immediately rather than wait years for it to be incorporated into traditional statistics packages. R produces amazing publication-quality graphics and plots, which are now being used by major news outlets such as the New York Times.

R can be easily modified so that you can organize output the way you like it. Repetitive tasks can be delegated to a function that can be stored and used in the future. It is even possible to write the results section of an article within RStudio, where the commands to insert all the statistics, tables and figures are in the document. RStudio will then generate a MS Word file ready to include in your manuscript. No more cutting and pasting figures or retyping tables to conform to journal guidelines. Of course, standard tools such as correlations, ANOVAs and regressions can be easily computed in R as well.

In this seminar, we assume that participants already know basic statistics through the general linear model (ANOVA and linear regression) and are familiar with at least one other statistics package such as SPSS, SAS or Stata.

The seminar will introduce the basics of how to work with R using examples and hands-on exercises. Many different types of statistical analyses will be illustrated and explained. Participants will also learn basic programming so they can harness the power of R to solve their own analytic problems.

Participants will learn how to use over a dozen different packages in R that provide advanced functionality and advanced statistical techniques.

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

**Technical**

- Free Books and Resources for DSC Members
- Learn Machine Learning Coding Basics in a weekend
- New Machine Learning Cheat Sheet | Old one
- Advanced Machine Learning with Basic Excel
- 12 Algorithms Every Data Scientist Should Know
- Hitchhiker's Guide to Data Science, Machine Learning, R, Python
- Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Pyth...
- How to Automatically Determine the Number of Clusters in your Data
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- Fast Combinatorial Feature Selection with New Definition of Predict...
- 10 types of regressions. Which one to use?
- 40 Techniques Used by Data Scientists
- 15 Deep Learning Tutorials
- R: a survival guide to data science with R

**Non Technical**

- Advanced Analytic Platforms - Incumbents Fall - Challengers Rise
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- How to Become a Data Scientist - On your own
- 16 analytic disciplines compared to data science
- Six categories of Data Scientists
- 21 data science systems used by Amazon to operate its business
- 24 Uses of Statistical Modeling
- 33 unusual problems that can be solved with data science
- 22 Differences Between Junior and Senior Data Scientists
- Why You Should be a Data Science Generalist - and How to Become One
- Becoming a Billionaire Data Scientist vs Struggling to Get a $100k Job
- Why do people with no experience want to become data scientists?

**Articles from top bloggers**

- Kirk Borne | Stephanie Glen | Vincent Granville
- Ajit Jaokar | Ronald van Loon | Bernard Marr
- Steve Miller | Bill Schmarzo | Bill Vorhies

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives**: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## RSVP for Statistics with R to add comments!

Join Data Science Central