Subscribe to DSC Newsletter
Vincent Granville
  • Male
  • Issaquah, WA
  • United States
Share

Vincent Granville's Friends

  • George F. Hart
  • Charles Fox
  • Antoine Bruyns
  • Tahir Irshad Siddiqi
  • Tullio Siragusa
  • Manu Dixit
  • john
  • Gautam Ganesh
  • Dilip MS
  • Eelco van Gelderen
  • Linh Tran
  • Crispin Stromberg
  • Paul Robert Bolton II
  • Rosaria Silipo
  • Matthew Holgate

Vincent Granville's Discussions

More Free Data Sets

Started on Wednesday 0 Replies

After posting my article A Plethora of Data Set Repositories, I received a few…Continue

For AI Engineers/Data Scientists: Implementing Enterprise AI course

Started on Wednesday 0 Replies

This unique course that is focussed on AI Engineering / AI for the Enterprise. Created in partnership with H2O.ai , the course uses Open Source technology to work with AI use cases. It is offered…Continue

Several papers on data science, for discussion

Started Nov 28 0 Replies

The following papers are very interesting.  The picture below is from the second paper. Longbing Cao. Data Science:…Continue

An Easier Way To Find R Documentation

Started this discussion. Last reply by Scott Nestler Oct 21. 1 Reply

R is a powerful language. From its ability to create complex statistical models with a few lines of code to its robust graphical capabilities and stunning data visualizations - R is a very handy…Continue

Gifts Received (3)

 

Vincent Granville's Page

Profile Information

Short Bio
Well rounded, visionary data science executive with broad spectrum of domain expertise, technical knowledge, and proven success in bringing measurable added value to companies ranging from startups to fortune 100, across multiple industries (finance, Internet, media, IT, security), domains (data science, operations research, machine learning, computer science, business intelligence, statistics, applied mathematics, growth hacking, IoT) and roles (data scientist, founder, CFO, CEO, HR, product development, marketing, media buyer, operations, management consulting).

Vincent developed and deployed new techniques such as hidden decision trees (for scoring and fraud detection), automated tagging, indexing and clustering of large document repositories, black-box, scalable, simple, noise-resistant regression known as the Jackknife Regression (fit for black-box, real-time or automated data processing), model-free confidence intervals, bucketisation, combinatorial feature selection algorithms, detecting causation not correlations, automated exploratory data analysis with data dictionaries, data videos as a visualization tool, automated data science, and generally speaking, the invention of a set of consistent robust statistical / machine learning techniques that can be understood, implemented, interpreted, leveraged and fine-tuned by the non-expert. Vincent also invented many synthetic metrics (for instance, predictive power and L1 goodness-of-fit) that work better than old-fashioned stats, especially on badly-behaved sparse big data. Some of these techniques have been implemented in a Map-Reduce Hadoop-like environment. Some are concerned with identifying true signal in an ocean of noisy data.

Vincent is a former post-doctorate of Cambridge University and the National Institute of Statistical Sciences. He was among the finalists at the Wharton School Business Plan Competition and at the Belgian Mathematical Olympiads. Vincent has published 40 papers in statistical journals (including Journal of Number Theory, IEEE Pattern analysis and Machine Intelligence, Journal of the Royal Statistical Society, Series B), a Wiley book on data science, and is an invited speaker at international conferences. He also holds a few patents on scoring technology, and raised $6 MM in VC funding for his first startup. Vincent also created the first IoT platform to automate growth and content generation for digital publishers, using a system of API's for machine-to-machine communications, involving Hootsuite, Twitter, and Google Analytics.

Vincent's profile is accessible here and includes top publications, presentations, and work experience with Visa, Microsoft, eBay, NBC, Wells Fargo, and other organisations.

Follow me on Twitter at @AnalyticBridge.
My Web Site Or LinkedIn Profile
http://www.linkedin.com/in/vincentg
Field of Expertise
Analytics, Big Data, Data Science
Professional Status
C-Level
Years of Experience:
15
Your Company:
Data Science Central, AnalyticBridge
Industry:
Internet
Your Job Title:
Executive Data Scientist, Co-Founder
How did you find out about DataScienceCentral?
Tim Matteson
Interests:
Networking, New venture, Recruiting, Other
What is your Favorite Data Mining or Analytical Website?
http://www.datasciencecentral.com
What Other Analytical Website do you Recommend?
http://www.analyticbridge.com

Bio

Well rounded, visionary data scientist with broad spectrum of domain expertise, technical knowledge, and proven success in bringing measurable added value to companies ranging from startups to fortune 100, across multiple industries (finance, Internet, media, IT, security) and domains (data science, operations research, machine learning, computer science, business intelligence, statistics, applied mathematics, growth hacking, IoT).

Vincent developed and deployed new techniques such as hidden decision trees (for scoring and fraud detection), automated tagging, indexing and clustering of large document repositories, black-box, scalable, simple, noise-resistant regression known as the Jackknife Regression (fit for black-box, real-time or automated data processing), model-free confidence intervals, bucketisation, combinatorial feature selection algorithms, detecting causation not correlations, and generally speaking, the invention of a set of consistent robust statistical / machine learning techniques that can be understood, implemented, interpreted, leveraged and fine-tuned by the non-expert. Vincent also invented many synthetic metrics (for instance, predictive power and L1 goodness-of-fit) that work better than old-fashioned stats, especially on badly-behaved sparse big data. Some of these techniques have been implemented in a Map-Reduce Hadoop-like environment. Some are concerned with identifying true signal in an ocean of noisy data.

Vincent is a former post-doctorate of Cambridge University and the National Institute of Statistical Sciences. He was among the finalists at the Wharton School Business Plan Competition and at the Belgian Mathematical Olympiads. Vincent has published 40 papers in statistical journals and is an invited speaker at international conferences. Vincent also created the first IoT platform to automate growth and content generation for digital publishers, using a system of API's for machine-to-machine communications, involving Hootsuite, Twitter, and Google Analytics.

Vincent's profile is accessible at http://bit.ly/1jWEfMP and includes top publications, presentations, and work experience with Visa, Microsoft, eBay, NBC, Wells Fargo, and other organisations.

Latest Activity

Vincent Granville commented on Vincent Granville's blog post The Fundamental Statistics Theorem Revisited
"@Matthew - My answer is no based on my investigations, but it is worth double-checking. "
7 hours ago
Marc Cox liked Vincent Granville's blog post Industry expert shares 2017 data predictions
11 hours ago
Matthew A. Riebel commented on Vincent Granville's blog post The Fundamental Statistics Theorem Revisited
"What about a(k) = 1/k^(3/4)? Would that converge to Gaussian?"
11 hours ago
Kevin Bass liked Vincent Granville's blog post Life Cycle of Data Science Projects
12 hours ago
SimpleRulesResearch liked Vincent Granville's blog post An Excel Tutorial on Analyzing Large Data Sets
12 hours ago
Vincent Granville posted a blog post

Weekly Digest, December 12

Monday newsletter published by Data Science Central. Previous editions can be found here.  The contribution flagged with a + is our selection for the picture of the week.AnnouncementUse data to drive decisions—and your career. Advance your knowledge through…See More
yesterday
Rafael Jimenez liked Vincent Granville's discussion More Free Data Sets
yesterday
Kenneth R Hensley replied to Vincent Granville's discussion Our Data Science Apprenticeship is Now Live in the group Data Science Apprenticeship
"Dr. Granville, Are you still doing this?  Thank you for your time. Kindest Regards, K.Robb Hensley"
yesterday
Mike Kiwa liked Vincent Granville's discussion More Free Data Sets
yesterday
Nuno Fernandes liked Vincent Granville's discussion For AI Engineers/Data Scientists: Implementing Enterprise AI course
yesterday
Thaddeus Neil Cummins liked Vincent Granville's blog post 66 job interview questions for data scientists
yesterday
Vladimir Shatalov liked Vincent Granville's blog post 13 Great Blogs Posted in the last 12 Months
yesterday
John Sobiranski liked Vincent Granville's blog post The Fundamental Statistics Theorem Revisited
Friday
John Sobiranski liked Vincent Granville's blog post Introduction to Number Theory: Fascinating Facts and Conjectures about Primes and Other Special Numbers
Friday
Brandon Rohrer commented on Vincent Granville's blog post How Bayesian Inference Works
"Great line of thought Xi Qin. The fundamental limitation there is that when we try two different priors, and get two different posteriors, we have no way of knowing which posterior is the best. To figure that out, we would have to gather more data…"
Friday
Vincent Granville posted a blog post
Thursday

Comment Wall (13 comments)

You need to be a member of Data Science Central to add comments!

Join Data Science Central

At 1:37pm on June 23, 2016, Bill Bahl said…

Dr. Granville,

I enjoyed your white paper on Building Dashboards that Flow and could not agree more with minimalism. One thing that seems to be missing from the dashboard packages I've seen is control charts.  At least for the process owner, my personal opinion is a control chart should be the first chart.  If the process is not stable and predicable, statistical analysis seems futile.  Before I retired (two months ago) we started including these in the process owners' LEAN PIT boards.  We generated them in Minitab.  It only takes a few clicks once the data is paste into Minitab.  Bill Bahl

At 12:05pm on February 11, 2016, Dean Pangelinan said…

Dr. Granville,

Regarding the passerelle options for the Data Science certification program, does the notation of "IEEE Computer Science Society - Member" refer to Associate Membership in the IEEE Computer Society, or to full IEEE Membership with additional membership in the IEEE Computer Science Society?

Please advise, at your earliest convenience.

--  Dean Pangelinan

At 5:05pm on June 21, 2015, Sankara Kumaravel gave Vincent Granville a gift
At 5:28am on June 15, 2015, Lissy Able said…

Hi Vincent,

Can you suggest some points or links about serious data quality issue with the information pulled.

Thanks

Lissy

At 3:38pm on March 11, 2015, Donald Tynes said…

Vincent,

I recently was hired as a data scientist. As a new hire, leading the department of Business Intelligence, I am faced with self-posed questions such as, "What do I need to accomplish in the first 5 days?" And, "What should I accomplish in the first month?" And, of course, "How do I develop a long-term plan for transforming the business into a data-driven organization?" To make the problem of determining how I should focus my attention even more complicated, I have a single employee whom I want to groom to understand the algorithms that I am implementing. Also, I have a CEO who only agreed to hire for this position because the CIO, CFO, and COO encouraged him to do so, but he is highly skeptical of what data science can do for the organization; this complicates matters too because it puts on me a pressure to be dazzling right out-of-the-box. 

I have given these questions considerable thought. I am on day 3 of my new job. I have decided to orient myself on the business' data, query tools, and self-service tools, such as QlikView. I have so many ideas, I have difficulty in choosing a single direction in which I should run. I must note that I want to be significantly impactful while minimizing disruptions in the business' daily functions. To that end, I keep thinking, "run a clustering analysis! Discover the patterns and trends in the company's data to begin the model-building process."

What advice would you give a young data scientist on his 4th day on the job (as it is for me, tomorrow)? 

At 5:22am on December 3, 2014, Harvey Summers said…

I thought you might like this site: http://rpsychologist.com/d3/CI/ 

Interpreting Confidence Intervals

an interactive visualization

At 11:29pm on October 31, 2014, Philippe Van Impe said…

Being from Belgium, you are welcome to join our meetup group about data sciences http://www.meetup.com/Brussels-Data-Science-Community-Meetup/

At 12:21pm on September 25, 2014, Christian Block said…

Hello Vincent, 

I just found DataScienceCentral and wanted to say thank you for putting it together! I'm looking forward to reading through more of the content and checking out your book (which I have ordered).  

Best Regards,

Christian Block

At 6:19am on August 5, 2014, Nasir M. Uddin, Ph.D. said…

Hi Vincent:

This is a great platform to be informed with any latest updates in the field of data science - thank you so much for such a platform.

Regards, Nasir 

At 8:03am on January 8, 2013, Marc Jape said…
Vincent:

This is a great platform that I was not aware of. Keep up the good work.

Regards,
Marc

Vincent Granville's Videos

  • Add Videos
  • View All

Vincent Granville's Blog

Weekly Digest, December 12

Posted on December 9, 2016 at 8:30pm 0 Comments

Monday newsletter published by Data Science Central. Previous editions can be found here.  The contribution flagged with a + is our selection for the picture of the week.

Announcement

  • Use data to drive decisions—and your career. Advance your knowledge through…
Continue

Ahem Detector with Deep Learning

Posted on December 7, 2016 at 9:15am 0 Comments

Guest blog by Francesco Gadaleta. Francesco is Data Scientist at Janssen Pharmaceutical Companies of Johnson & Johnson and a Science writer. He is committed to “A World Without Disease” paradigm shift in healthcare, leveraging Artificial Intelligence and Data Science to predict risk and intercepting diseases. He is focused on putting machine learning at the service of human beings.

Do you know why you can’t hear the…

Continue

Industry expert shares 2017 data predictions

Posted on December 6, 2016 at 7:30pm 0 Comments

Siummary: In 2017, AI and analytics M&A activity will accelerate, data lakes will finally become useful, and data monetization strategies will mature. These are some of the predictions Ramon Chen, CMO of data management innovator, Reltio, has for the coming year. …

Continue
 
 
 

Follow Us

Videos

  • Add Videos
  • View All

Resources

© 2016   Data Science Central   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service