Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.
Due to its simplicity it has gained wide popularity among the data scientists and the HPC users that want to create and share applications that integrates the code, the…
ContinueAdded by Chris Kachris on November 11, 2019 at 12:30am — No Comments
Machine learning algorithms are extremely computationally intensive and time consuming when they must be trained on large amounts of data. Typical processors are not optimized for machine learning applications and therefore offer limited performance. Therefore, both academia an industry is focused on the development of specialized architectures for the efficient acceleration of machine learning applications.
FPGAs are programmable chips that can be configured with tailored-made…
ContinueAdded by Chris Kachris on July 1, 2019 at 10:00pm — No Comments
Emerging applications like machine learning (ML), big data analytics, and artificial intelligence (AI) has created the need for many companies to hire highly skilled and experienced work force. Demand for data scientists, ML engineers and data engineers is booming and will only increase in the next years. The January report from Indeed, one of the top job sites, showed a 29% increase in demand for data scientists year over year and a 344% increase since 2013.
Salaries and…
ContinueAdded by Chris Kachris on May 17, 2019 at 4:30am — No Comments
Machine learning applications require powerful and scalable computing systems that can sustain the high computation complexity of these applications. Companies that are working on the domain of machine learning have to allocate a significant amount of their budget for the OpEx of machine learning applications whether this is done on cloud or on-prem.
Typical machine learning application…
ContinueAdded by Chris Kachris on May 14, 2019 at 11:30pm — No Comments
Emerging cloud applications like machine learning, AI and big data analytics require high performance computing systems that can sustain the increased amount of data processing without consuming excessive power. Towards this end, many cloud operators have started adopting heterogeneous infrastructures deploying hardware accelerators, like FPGAs, to increase the performance of computational intensive tasks. However, most hardware accelerators lack…
ContinueAdded by Chris Kachris on November 6, 2018 at 7:00am — 2 Comments
© 2019 Data Science Central ®
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles