Summary: Not enough labeled training data is a huge barrier to getting at the equally large benefits that could be had from deep learning applications. Here are five strategies for getting around the data problem including the latest in One Shot Learning.
For at least the last two years we’ve been in an…
Added by William Vorhies on January 28, 2019 at 9:56am — 1 Comment
Summary: The world of healthcare may look like the most fertile field for AI/ML apps but in practice it’s fraught with barriers. These range from cultural differences, to the failure of developers to really understand the environment they are trying to enhance, to regulatory and logical Catch 22s that work against adoption. Part 3 of 3.
…
ContinueAdded by William Vorhies on January 21, 2019 at 7:59am — 2 Comments
Summary: Despite hundreds of projects and thousands of data scientists devoted to bringing AI/ML to healthcare, adoption remains low and slow. A good portion of this problem is our own fault for failing to see the processes being disrupted through the eyes of the physician users. Here we lay out the healthcare opportunity landscape but for data scientists following classical disruption strategies, it may be more of a minefield. Part 2 of…
ContinueAdded by William Vorhies on January 14, 2019 at 8:00am — No Comments
Summary: If you want to understand the promise of AI/ML in healthcare you need to see it through the eyes of physicians, the ultimate users. Turns out these folks aren’t the rapid adopters you’d think they’d be and the problem is largely with the way data scientists have tried to implement. Part 1 of 3.
Continue
Added by William Vorhies on January 7, 2019 at 8:00am — 4 Comments
2020
2019
2018
2017
2016
2015
2014
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles