Ashley Madison, IRS, Target, Sony…What do they have in common? Here we only name a few but of the most tremendous crisis of data breach in recent years - yes, it is happening and it is happening everywhere. The cost of data breach comes to a new high at $154 per record of stolen or leaked data, adding up to millions of data for each incident, including the law suits,…
ContinueAdded by Yuanjen Chen on September 1, 2015 at 9:00pm — 1 Comment
The 3Vs model is the foundation of big data - Volume, Velocity, and Variety. It is used to express the key features of big data problems - for me, this is about to change. Big Data is not just about size, speed, or formats, the contextual enrichment is the most critical factor of how we unmask the best value out of data. How well you bring seemingly unrelated data together and identify the valuable connections determines how much power you unleash from your…
ContinueAdded by Yuanjen Chen on May 13, 2015 at 1:00pm — No Comments
Data science might be one of the hottest buzzwords in 2013. But is it only a marketing gimmick? I don’t think so. In my opinion, data science can be the best protocol that reveals what’s happening every day in the real world.
The data science incorporates mathematics, statistics, computer science and…
ContinueAdded by Yuanjen Chen on February 6, 2014 at 6:30pm — No Comments
The BigObject® - A Computing Engine Designed for Big Data
BigObject® presents an in-place* computing approach, designed to solve the complexity of big data and compute on a real-time basis. The mission of the BigObject® is to deliver affordable computing power, enabling enterprises of all scales to interpret big data. With the advances in what a commodity machine can perform, it…
ContinueAdded by Yuanjen Chen on November 20, 2013 at 5:29pm — No Comments
We have been using tables in the relational database, mostly for the transactional purposes, and that proves effective. Considering the data size and analytic purpose, however, the data structure might need to be redesigned for better efficiency.
To determine how to decompose the complexity of big data, we have observed the way the organisms function. In the physical world, the universe is organized into a hierarchy of…
ContinueAdded by Yuanjen Chen on November 3, 2013 at 10:29pm — No Comments
In general, computer scientists treats code and data in two very different ways. Virtual memory was originally developed to run big programs (code) in small memory, while data are entities kept in external storage and must be retrieved into memory before computing. As a result, today’s application developers think by instinct the programming model based on storage and explicit data retrieval. This model, referred to as storage-based computing, plays an important role and has done a great job…
ContinueAdded by Yuanjen Chen on October 31, 2013 at 7:24pm — No Comments
To be short, in-memory computing takes advantage of physical memory, which is expected to process data much faster than disk. In-place, on the other hand, fully utilizes the address space of 64bit architecture. Both are gifts from the modern computer science; both are essences of the BigObject.
In-place computing only becomes possible upon the introduction of 64bit architecture, whose address space is big enough to hold the entire data set for most of cases we are dealing with today.…
ContinueAdded by Yuanjen Chen on October 29, 2013 at 1:00am — No Comments
Hi all,
This is my first post here. I'm glad to introduce this newly launched big data analytic engine, the BigObject. In the past 2 years we have been working on an optimal approach to handle big data for analytic purposes and challenging the existed models, some assumptions of which are no longer valid. For example, as the data size grows so rapidly, is it still practical that we stick to the relational models neglecting the time spending in data retrievals? What impact did…
ContinueAdded by Yuanjen Chen on October 23, 2013 at 11:30pm — 2 Comments
Posted 1 March 2021
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles