Every product team wants to know what makes their product thrive. They want to know how to optimize metrics and leave users the happiest and most engaged. Without a way to definitively understand user behavior, they must turn to anything they can. Enter the A/B test.

Ultimately, every A/B test starts from a hypothesis. The hypothesis could be, “If we did [blank], then we would improve conversion.” Or “Feature X should drive increased retention, let’s test out that assumption through…

ContinueAdded by Divya Parmar on May 23, 2017 at 8:00am — No Comments

In this day and age, you can’t go a day without hearing terms such as “data science,” “big data,” or “analytics.” These terms have been thrown around to apply to so many situations that the original meaning of these words is lost.

So, what does it take for any organization to be successfully data-driven? Although analytics may seem complicated, the solution comes from simplicity.

I believe it comes down to four things, as I’ve illustrated below: business need, clean data…

ContinueAdded by Divya Parmar on August 29, 2016 at 7:30pm — 1 Comment

After data science, which I discussed in an earlier post, data visualization is one of the most common buzzwords thrown around in the tech and business communities. To demonstrate how one can actually visualize data, I want to use one of the hottest tools in the market right now: Tableau. You can download Tableau Public for free …

ContinueAdded by Divya Parmar on August 18, 2015 at 8:25am — No Comments

When you hear the term data scientist, what do you think of? If you’re like most people, you might think of something incredibly complex, with statistical terms and programming languages that are beyond comprehension. You might think that only PhD’s in computer science can do data science.

But if you peel back the layers, you’ll find that this isn’t the case. Data science, coined by DJ Patil who is now the…

ContinueAdded by Divya Parmar on August 11, 2015 at 8:46am — 2 Comments

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Statistics -- New Foundations, Toolbox, and Machine Learning Recipes
- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions