Sheetal Sharma has not received any gifts yet

- Job Title:
- Information Technology

- Seniority:
- Other

- Interests:
- Other

Posted on April 10, 2018 at 7:00pm 0 Comments 0 Likes

Learning rule or Learning process is a method or a mathematical logic. It improves the Artificial Neural Network's performance and applies this rule over the network. Thus learning rules updates the weights and bias levels of a network when a network simulates in a specific data environment.

Applying learning rule is an iterative process. It helps a…

ContinuePosted on August 17, 2017 at 11:30pm 0 Comments 1 Like

**Applications of SVM in Real World **

SVMs depends on supervised learning algorithms. The aim of using SVM is to correctly classify unseen data. SVMs have a number of applications in several fields.

Some common applications of SVM are-

- Face detection – SVMc classify parts of the image as a face and non-face and create a square boundary around the face.

- Text and hypertext…

Posted on August 15, 2017 at 7:00pm 0 Comments 5 Likes

Learning of neural network takes place on the basis of a sample of the population under study. During the course of learning, compare the value delivered by output unit with actual value. After that adjust the weights of all units so to improve the prediction.

There are many Neural Network Algorithms are available for training …

ContinuePosted on August 10, 2017 at 7:30pm 0 Comments 0 Likes

There are various Artificial Neural Network Models. Main ones are

- Multilayer Perceptron – It is a feedforward artificial neural network model. It maps sets of input data onto a set of appropriate outputs.
- Radial Basis Function Network – A radial basis function network is an artificial neural network. It uses radial basis functions…

© 2021 TechTarget, Inc. Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## Comment Wall

## You need to be a member of Data Science Central to add comments!

Join Data Science Central