Frank Raulf has not received any gifts yet
Posted on June 24, 2020 at 7:00am 0 Comments 1 Like
The gradient decent approach is used in many algorithms to minimize loss functions. In this introduction we will see how exactly a gradient descent works. In addition, some special features will be pointed out. We will be guided by a practical example.…
Posted on January 26, 2020 at 4:00am 0 Comments 0 Likes
There are many ways to deal with time-data. Sometimes one can use it as time-series to take possible trends into account. Sometimes this is not possible because time can not be arranged in a sequence. For example, if there are just weekdays (1 to 7) in a dataset over several month. In this case one could use one-hot-encoding. However, considering minutes or seconds of a day one-hot-encoding might lead to high complexity. Another approach is to make time cyclical. This approach leads to a…
ContinuePosted on January 4, 2020 at 3:00am 0 Comments 0 Likes
For decision making, human perception tends to arrange probabilities into above 50% and below - which is plausible. For most probabilistic models in contrast, this is not the case at all. Frequently, resulting probabilities are neither normal distributed between zero and one with a mean of 0.5 nor correct in terms of absolute values. This is not seldom an issue accompanied with the existence of a minority class - in the underlying dataset.
For example, if the result of a…
ContinuePosted on January 3, 2020 at 4:30am 0 Comments 0 Likes
Bayesian inference is the re-allocation of credibilities over possibilities [Krutschke 2015]. This means that a bayesian statistician has an “a priori” opinion regarding the probabilities of an event:
p(d) (1)
By observing new data x, the statistician will adjust his opinions to get the "a posteriori" probabilities.
p(d|x) (2)
The conditional probability of an event d given x is the share of the joint…
Continue
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles