These techniques cover most of what data scientists and related practitioners are using in their daily activities, whether they use solutions offered by a vendor, or whether they design proprietary tools. When you click on any of the 40 links below, you will find a selection of articles related to the entry in question. Most of these articles are hard to find with a Google search, so in some ways this gives you access to the hidden literature on data science, machine learning, and statistical science. Many of these articles are fundamental to understanding the technique in question, and come with further references and source code.
Starred techniques (marked with a *) belong to what I call deep data science, a branch of data science that has little if any overlap with closely related fields such as machine learning, computer science, operations research, mathematics, or statistics. Even classical machine learning and statistical techniques such as clustering, density estimation, or tests of hypotheses, have model-free, data-driven, robust versions designed for automated processing (as in machine-to-machine communications), and thus also belong to deep data science. However, these techniques are not starred here, as the standard versions of these techniques are more well known (and unfortunately more used) than the deep data science equivalent.
To learn more about deep data science, click here. Note that unlike deep learning, deep data science is not the intersection of data science and artificial intelligence; however, the analogy between deep data science and deep learning is not completely meaningless, in the sense that both deal with automation.
Also, to discover in which contexts and applications the 40 techniques below are used, I invite you to read the following articles:
Finally, when using a technique, you need to test its performance. Read this article about 11 Important Model Evaluation Techniques Everyone Should Know.
The 40 data science techniques
The number of techniques is higher than 40 because we updated the article, and added additional ones.
DSC Resources
Additional Reading
Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge
Comment
Thanks Vincent, you're a reference for youngs data scientists.
Comprehensive and relevant!
Thanks for the summary, helpful for me in getting started.
Posted 12 April 2021
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles
You need to be a member of Data Science Central to add comments!
Join Data Science Central