Home » Uncategorized

The Math Required for Machine Learning

This article was written by Harsh Sikka. This version is a summary of the original article.


Start with  Mathematics for Machine Learning Specialization on Coursera. If starting from complete scratch, the topics you should certainly review/cover, in any order are as follows:

  1. Linear Algebra — Professor Strang’s textbook and MIT Open Courseware course are recommended for good reason. Khan Academy also has some great resources, and there is a helpful set of review notes from Stanford.
  2. Multivariate Calculus — Again, MIT Open Courseware has good courses, and so does Khan Academy.
  3. Probability — Stanford’s CS 229, a course I’ve mentioned later, has an awesome probability review worth checking out.

Once you’ve finished the resources above, I’d say you’re in a great place to tackle the Andrew Ng Coursera Course or its more mature, mathematically rigorous older brother, CS 229.

To read the original article, click here.

DSC Resources