Subscribe to DSC Newsletter

Using Artificial Intelligence To Sense Buyer Intent

Some months ago, booking.com joined the ginger group of brands to combine artificial intelligence (AI) with mobile to get a headsup in anticipating a customer’s purchase intent.

Booking.com app users now not only receive instant booking access to a destination with a single QR code but also get personalized offers based on their earlier travel experiences, preferences and interactions. That’s how it tackled the issue of buyer intent.

Over the last year or so, the process of anticipating a buyer’s intent has got even more scientific. We have seen brands like booking.com actively deploy the “cold and emotionless” instrument of AI in a field which is almost always centered around human emotions – intent. Instead of spending solely on advertising that could target perhaps the wrong demographics, or address audiences who may have no contextual relevance at all, brands are increasing utilizing their funds to invest in AI driven tech to “understand” a buyer’s intent. Ironical, isn’t it, that cold algorithms are being used to predict, accurately one must say, a human act which is a chain of events driven by a person’s knowledge and experience.

Purchaser intent is akin to a guessing game but AI is taking out some of the guess work. Targeting buyer intent calls for using a combination of active and passive data to accurately deduce, with some degree of probability, whether a customer is in the market right now to buy or not. Data sources capture such “intent” signals that consumers emit and point the brand in the right direction.

AI, riding on a blazing fast computational power, lets brands quickly understand what the consumers are thinking in order to identify patterns, and also predict how quickly they will respond to advertising that touches an emotion.

AI and machine learning are linking the marketer with the “connected” individual. More and more marketers are relying on intent targeting to execute outbound demand generation campaigns.

It’s no longer only about grouping together like-minded customers and trying to second-guess what they want. The customer journey just got more sophisticated and granular with the deployment of AI in understanding what an individual buyer intends to do next in his journey. It’s like a race today; the first brand off the blocks who gets this also gets the customer as the prize.

There are a few brands in the hospitality business like bookings.com who have stepped up to the plate and integrated AI in their operations, giving consumers a plethora of AI-driven experiences.

Other brands are looking at using AI tech to do an even more effective predictive lead scoring, fine tuning their marketing efforts, and predicting a purchaser’s intent near-automatically.

Popular use cases of AI in understanding a buyer’s intent are:

To predict why someone may want to contact your organization even before they do.

Send proactive notifications by identifying customer patterns and trends and contact them even before they call or contact your company.

Sources of data:

Earlier in this post, we spoke of sources of intent. Here are a few:

Search

This is the most obvious touchpoint, besides, of course, social channels. A fav source of intent signal is from what a customer has searched for online. So, if someone has just searched for red shoes, there’s a strong chance she is looking to buy.

Editorial content

What a customer is currently reading is also a pointer. What’s more, articles read online can also indicate at what stage a buyer is. If he is simply browsing and looking up articles about smartwatches, he is still at the research stage.  When he starts reading about specific watch brands, he is almost ready to buy.

Advertiser content

Again, the very type of ads that people are clicking on can tell you what they are looking out for.

All of this monitoring and deduction can now be entrusted to a AI driven program, to collect and collate, in order to take proactive action. All of which will elevate the customer’s experience and improves business results.

Views: 498

Comment

You need to be a member of Data Science Central to add comments!

Join Data Science Central

Videos

  • Add Videos
  • View All

© 2019   Data Science Central ®   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service