As a teacher of Data Science (Data Science for Internet of Things course at the University of Oxford), I am always fascinated in cross connection between concepts. I noticed an interesting image on Tess Fernandez slideshare (which I very much recommend you follow) which talked of Logistic Regression as a neural network

Image source: Tess Fernandez

These pictures are self-explanatory when you break down the idea of logistic regression as a Linear Regression and a Sigmoid function

Image source: Tess Fernandez

To recap, Logistic regression is a binary classification method. It can be modelled as a function that can take in any number of inputs and constrain the output to be between 0 and 1. This means, we can think of Logistic Regression as a one-layer neural network. For a binary output, if the true label is y (y = 0 or y = 1) and y_hat is the predicted output – then y_hat represents the probability that y = 1 - given inputs w and x. Therefore, the probability that y = 0 given inputs w and x is (1 - y_hat), as shown below.

Images source: @melodious

Which gives us

Image source: Tess Fernandez

Sebastian Raschcka also provides a good explanation when he says that – we can think of logistic regression as a one layer neural network where using the threshold function in the output layer gives us a binary classification

I hope you found this analysis useful as well.

- Juniper adds Mist AIOps to its 128 Technology-based SD-WAN
- 10 microservices patterns all architects should know
- IBM extends Call for Code for Racial Justice program
- citizen development
- How to manage third-party risk in the supply chain
- Gartner predicts data storytelling will dominate BI by 2025
- AWS Data Exchange and the third-party cloud data marketplace
- Overcome common IoT edge computing architecture issues

Posted 1 March 2021

© 2021 TechTarget, Inc. Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central