Last week, at an event on AI, I asked the panel about how investors evaluate the Data readiness of AI start-ups. This subject is close to my work and my teaching. I teach a course on Implementing Enterprise AI and also teach Data Science for IoT at the University of Oxford. Below are my perspectives.
Background
Professor Neil Laurence has proposed a concept of Data readiness levels. The highest level of Data readiness represents Data which is most useful to make predictions i.e. “Can we use this data to prove the efficacy of a drug?”
In many cases, start-ups do not have data that is useful for making predictions. This applies very much to AI start-ups.
AI is based on Deep Learning algorithms. Deep Learning involves automatic feature detection from data. To do so, by definition, we need a lot of Data. More specifically, we need a lot of labelled data to train the Deep Learning algorithm layers.
Many start-ups/companies do not have this data – and hence may not be able to solve the problem they set out to solve. Hence, one could argue that most AI start-ups are actually not Data ready.
I believe that there are various ways to address this problem
Data readiness strategies
My overall impression is:
AI is a very new field and there is competitive advantage to first movers. Thus, many companies are adopting variants of the above strategies and will move forward even when they have limited data initially. But, by the same token, companies must have a clear set of strategies in place as they address investors. I discuss these ideas in the Implementing Enterprise AI course
Posted 1 March 2021
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles
You need to be a member of Data Science Central to add comments!
Join Data Science Central