*This article was written by Swati Kashyap. Swati is a data science & analytics enthusiast. Currently,she is learning data science at Analytics Vidhya.*

Mathematics & Statistics are the founding steps for data science and machine learning. Most of the successful data scientists I know of, come from one of these areas – computer science, applied mathematics & statistics or economics. If you wish to excel in data science, you must have a good understanding of basic algebra and statistics.

However, learning Maths for people not having background in mathematics can be intimidating. First, you have to identify what to study and what not. The list can include Linear Algebra, calculus, probability, statistics, discrete mathematics, regression, optimization and many more topics. What do you do? How deep to you want to get in each of these topics? It is very difficult to navigate through this by yourself.

If you have faced this situation before – don’t worry! You are at the right place now. I have done the hard work for you. Here is a list of popular open courses on Maths for Data science from Coursera, edX, Udemy and Udacity. The list has been carefully curated to give you a structured path to teach you the required concepts of mathematics used in data science.

**Which course is suitable for you?**

To help you navigate through the courses, I have divided the article into beginners, intermediate and advanced section. Choose your level of expertise in mathematics before delving further. Further, I have added the pre-requisites for each course. You can check if you know these topics before starting the course.

Few courses may require you to finish the preceding course for better understanding. So, make sure that you either know the subject or have undergone these courses.

Read on to find out the right course for you!

**Beginners Mathematics / Statistics**

- Data Science Maths Skills
- Intro to Descriptive Statistics
- Intro to Inferential Statistics
- Introduction to Probability and Data
- Math is Everywhere: Applications of Finite Math
- Probability: Basic Concepts & Discrete Random Variables
- Mathematical Biostatistics Boot Camp 1
- Applications of Linear Algebra Part 1
- Introduction to Mathematical Thinking

**Intermediate Mathematics / Statistics**

- Bayesian Statistics: From Concept to Data Analysis
- Game Theory 1
- Game Theory II: Advanced Applications
- Advanced Linear Models for Data Science 1: Least Squares
- Advanced Linear Models for Data Science 2: Statistical Linear Models
- Introduction to Linear Models and Matrix Algebra
- Maths in Sports

**Advanced Mathematics / Statistics**

- Discrete Optimization
- Statistics for Genomic Data Science
- Biostatistics for Big Data Applications

To check out all this information, click here.

- Juniper adds Mist AIOps to its 128 Technology-based SD-WAN
- 10 microservices patterns all architects should know
- IBM extends Call for Code for Racial Justice program
- citizen development
- How to manage third-party risk in the supply chain
- Gartner predicts data storytelling will dominate BI by 2025
- AWS Data Exchange and the third-party cloud data marketplace
- Overcome common IoT edge computing architecture issues

Posted 1 March 2021

© 2021 TechTarget, Inc. Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central