DSC Webinar Series: How to Create Mathematical Optimization Models with Python

With mathematical optimization, companies can capture the key features of their business problems in an optimization model and can generate optimal solutions (which are used as the basis to make optimal decisions). Data scientists with some basic mathematical programming skills can easily learn how to build, implement, and maintain mathematical optimization applications.

The Gurobi Python API borrows ideas from modeling languages, enabling users to deploy and solve mathematical optimization models with scripts that are easy to write, read, and maintain. Such modules can even be embedded in decision support systems for production-ready applications.

In this latest Data Science Central webinar, we will:

Discuss the motivation for using Python in mathematical optimization applications

Help you understand the importance of parameterizing a mathematical optimization model
Review some of the best practices for deploying mathematical optimization models in Python

Juan Orozco Guzman, Optimization Support Engineer- Gurobi Optimization

Hosted by:
Sean Welch, Host and Producer - Data Science Central

Views: 1263


You need to be a member of Data Science Central to add comments!

Join Data Science Central

© 2021   TechTarget, Inc.   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service