Subscribe to DSC Newsletter

Using machine learning to generate music

Apart from fighting web spam, credit card fraud and many more curious applications, machine learning is being widely used in the field of art to generate stuff. We collected a few open source projects and papers which help you understand how machine learning can be used in the field of music.

GRUV

GRUV is a Python project for algorithmic music generation using recurrent neural networks.

MarkovComposer

The project is an algorithmic composer based on machine learning using a second order Markov chain.

biaxial-rnn-music-composition

This code implements a recurrent neural network trained to generate classical music. The model, which uses LSTM layers and draws inspiration from convolutional neural networks, learns to predict which notes will be played at each time step of a musical piece.

deepAutoController

The project builds a deep autoencoder and acoustically monitors the influence of the middle code layer using a Kork nanoKontroller2.

The project aims to achieve two goals:

  • Allow a user to gain a better understanding of the code layer of a deep autoencoder

  • Create new sounds by performing sample-based synthesis using a deep autoencoder.

The code in this repository will allow one to

  • Collect a corpus of Constant Q Fourier Transform features

  • Train a deep autoencoder having an arbitrary number of hidden layers and units per layer

  • Perform music by modifying the optimized model interactively with a midi controller

sound-rnn

The project helps in generating sound using recurrent neural networks. The project has been summed in the blog post here.

neuralnetmusic

Project for composing music using neural nets.

MusicComposer

The project contains code for statistics-driven music composition and machine learning. Further explanation can be found in the blog post here.

DopeLearning: A Computational Approach to Rap Lyrics Generation

Writing rap lyrics requires both creativity, to construct a meaningful and an interesting story, and lyrical skills, to produce complex rhyme patterns, which are the cornerstone of a good flow. This paper presents a method for capturing both of these aspects. Approach is based on two machine-learning techniques: the RankSVM algorithm, and a deep neural network model with a novel structure.

The list is compiled by Banjog.

Views: 14035

Comment

You need to be a member of Data Science Central to add comments!

Join Data Science Central

Follow Us

Videos

  • Add Videos
  • View All

Resources

© 2018   Data Science Central   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service