Data mining is the process of looking at large banks of information to generate new information. Intuitively, you might think that data “mining” refers to the extraction of new data, but this isn’t the case; instead, data mining is about extrapolating patterns and new knowledge from the data you’ve already collected.

Relying on techniques and technologies from the intersection of database management, statistics, and machine learning, specialists in data mining have dedicated their careers to better understanding how to process and draw conclusions from vast amounts of information. But what are the techniques they use to make this happen?

**Data Mining Techniques**

Data mining is highly effective, so long as it draws upon one or more of these techniques:

**1. Tracking patterns.** One of the most basic techniques in data mining is learning to recognize patterns in your data sets. This is usually a recognition of some aberration in your data happening at regular intervals, or an ebb and flow of a certain variable over time. For example, you might see that your sales of a certain product seem to spike just before the holidays, or notice that warmer weather drives more people to your website.

**2. Classification.** Classification is a more complex data mining technique that forces you to collect various attributes together into discernable categories, which you can then use to draw further conclusions, or serve some function. For example, if you’re evaluating data on individual customers’ financial backgrounds and purchase histories, you might be able to classify them as “low,” “medium,” or “high” credit risks. You could then use these classifications to learn even more about those customers.

**3. Association.** Association is related to tracking patterns, but is more specific to dependently linked variables. In this case, you’ll look for specific events or attributes that are highly correlated with another event or attribute; for example, you might notice that when your customers buy a specific item, they also often buy a second, related item. This is usually what’s used to populate “people also bought” sections of online stores.

**4. Outlier detection.** In many cases, simply recognizing the overarching pattern can’t give you a clear understanding of your data set. You also need to be able to identify anomalies, or outliers in your data. For example, if your purchasers are almost exclusively male, but during one strange week in July, there’s a huge spike in female purchasers, you’ll want to investigate the spike and see what drove it, so you can either replicate it or better understand your audience in the process.

**5. Clustering.** Clustering is very similar to classification, but involves grouping chunks of data together based on their similarities. For example, you might choose to cluster different demographics of your audience into different packets based on how much disposable income they have, or how often they tend to shop at your store.

**6. Regression.** Regression, used primarily as a form of planning and modeling, is used to identify the likelihood of a certain variable, given the presence of other variables. For example, you could use it to project a certain price, based on other factors like availability, consumer demand, and competition. More specifically, regression’s main focus is to help you uncover the exact relationship between two (or more) variables in a given data set.

**7. Prediction.** Prediction is one of the most valuable data mining techniques, since it’s used to project the types of data you’ll see in the future. In many cases, just recognizing and understanding historical trends is enough to chart a somewhat accurate prediction of what will happen in the future. For example, you might review consumers’ credit histories and past purchases to predict whether they’ll be a credit risk in the future.

**Data Mining Tools**

So do you need the latest and greatest machine learning technology to be able to apply these techniques? Not necessarily. In fact, you can probably accomplish some cutting-edge data mining with relatively modest database systems, and simple tools that almost any company will have. And if you don’t have the right tools for the job, you can always create your own.

However you approach it, data mining is the best collection of techniques you have for making the most out of the data you’ve already gathered. As long as you apply the correct logic, and ask the right questions, you can walk away with conclusions that have the potential to revolutionize your enterprise.

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

**Technical**

- Free Books and Resources for DSC Members
- Learn Machine Learning Coding Basics in a weekend
- New Machine Learning Cheat Sheet | Old one
- Advanced Machine Learning with Basic Excel
- 12 Algorithms Every Data Scientist Should Know
- Hitchhiker's Guide to Data Science, Machine Learning, R, Python
- Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Pyth...
- How to Automatically Determine the Number of Clusters in your Data
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- Fast Combinatorial Feature Selection with New Definition of Predict...
- 10 types of regressions. Which one to use?
- 40 Techniques Used by Data Scientists
- 15 Deep Learning Tutorials
- R: a survival guide to data science with R

**Non Technical**

- Advanced Analytic Platforms - Incumbents Fall - Challengers Rise
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- How to Become a Data Scientist - On your own
- 16 analytic disciplines compared to data science
- Six categories of Data Scientists
- 21 data science systems used by Amazon to operate its business
- 24 Uses of Statistical Modeling
- 33 unusual problems that can be solved with data science
- 22 Differences Between Junior and Senior Data Scientists
- Why You Should be a Data Science Generalist - and How to Become One
- Becoming a Billionaire Data Scientist vs Struggling to Get a $100k Job
- Why do people with no experience want to become data scientists?

**Articles from top bloggers**

- Kirk Borne | Stephanie Glen | Vincent Granville
- Ajit Jaokar | Ronald van Loon | Bernard Marr
- Steve Miller | Bill Schmarzo | Bill Vorhies

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives**: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central