*Summary:** For all the hype around winning game play and self-driving cars, traditional Reinforcement Learning (RL) has yet to deliver as a reliable tool for ML applications. Here we explore the main drawbacks as well as an innovative approach to RL that dramatically reduces the training compute requirement and time to train.*

Ever since Reinforcement Learning (RL) was recognized as a legitimate third style of machine learning alongside supervised and unsupervised learning we’ve been waiting for that killer app to prove its value.

Yes RL has had some press-worthy wins in game play (Alpha Go), self-driving cars (not here yet), drone control, and even dialogue systems like personal assistants but the big breakthrough isn’t here yet.

RL ought to be our go-to solution for any problem requiring sequential decisions and these individual successes might make you think that RL is ready for prime time but the reality is that it’s not.

**Shortcomings of Reinforcement Learning**

Romain Laroche, a Principal Researcher in RL at Microsoft points out * several critical shortcomings*. And while there are several, the most severe problems to be overcome Laroche points out are these:

*“T**hey are largely unreliable**. Even worse, two runs with different random seeds can yield very different results because of the stochasticity in the reinforcement learning process.”**“T**hey require billions of samples to obtain their results and extracting such astronomical numbers of samples in real world applications isn’t feasible.”*

In fact, if you read our last blog closely about the * barriers to continuously improving AI*, you would have seen that the increasing compute power necessary to improve the most advanced algorithms is rapidly approaching the point of becoming uneconomic. And, that the most compute hungry among the examples tracked by OpenAI is AlphaGoZero, an RL game play algorithm requiring orders of magnitude more compute than the next closest deep learning application.

While Laroche’s research has lately focused on the reliability problem and he’s making some headway, if we don’t solve the compute requirement problem RL can’t take its rightful place as an important ML tool.

**Upside Down Reinforcement Learning (UDRL)**

* Two recent papers* out of AI

*“Traditional Reinforcement Learning (RL) algorithms either predict rewards with value functions or maximize them using policy search. We study an alternative: Upside-Down Reinforcement Learning (Upside-Down RL or UDRL), that solves RL problems primarily using supervised learning techniques.”*

In its traditional configuration using value functions or policy search the RL algorithm essentially conducts a completely random search of the state space to find an optimum solution. The fact that it is in fact a random search accounts for the extremely large compute requirement for training. The more sequential steps in the learning process, the greater the search and compute requirement.

The new upside down approach introduces gradient descent from supervised learning which promises to make training orders of magnitude more efficient.

**How It Works**

Using rewards as inputs, UDRL observes commands as a combination of desired rewards and time horizons. For example “get so much reward within so much time” and then “get even more reward within even less time”.

As in traditional RL UDRL learns by simply interacting with its state space except that these unique commands now create learning based on gradient descent using these self-generated commands.

In short this means training occurs against trials that were previously considered successful (gradient descent) as opposed to completely random exploration.

On complex problems with many sequential steps UDRL proved both more accurate and most important much quicker to train than traditional RL (see steepness of green line on the left in the chart * from the paper* below).

This does leave open the exploration/exploitation question since gradient descent techniques can hang on local optima, underfitting or overfitting.

**A Main Application – Learn by Imitation**

One of the most interesting applications of UDRL that speaks directly to reduced training time and compute is its ability to be used in train-by-example, or train-by-imitation techniques in robotics.

For example, a robotic arm could be manipulated by a human through the steps of a complex operation such as the assembly of an entire electronic device. The process would be repeated several times but each would be regarded as a successful example.

A video of the process would be divided into separate frames for training and as input to an RNN model resulting in supervised learning which the robot must learn to imitate. The task will be the command in the form of a reward which the robot will map with an action.

While this is new research yet to be proven in commercial application, the reduction in required compute and time to train goes a long way to resolving one of RLs biggest drawbacks.

__Other articles by Bill Vorhies__

About the author: Bill is Contributing Editor for Data Science Central. Bill is also President & Chief Data Scientist at Data-Magnum and has practiced as a data scientist since 2001. His articles have been read more than 2 million times.

He can be reached at:

- Juniper adds Mist AIOps to its 128 Technology-based SD-WAN
- 10 microservices patterns all architects should know
- IBM extends Call for Code for Racial Justice program
- citizen development
- How to manage third-party risk in the supply chain
- Gartner predicts data storytelling will dominate BI by 2025
- AWS Data Exchange and the third-party cloud data marketplace
- Overcome common IoT edge computing architecture issues

Posted 1 March 2021

© 2021 TechTarget, Inc. Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central