In this post I will sometimes use a term “variable” for “feature”(“predictor”“) or”outcome“(”predicted value“”).

The question of variable dependencies for a particular data is quite important, because it can help to reduce an amount of predictors used for a model. Or it can tell us what feature is not helpful for a model construction, although it still can be used for engineering of another predictor. For example sometimes it is better to compute speed than to use distance values. In addition some standard algorithms assume independence of features and knowing how close to reality such assumption is useful.

The standard way to check dependencies of variables is to compute their covariance matrix. But it yields only linear dependencies. If dependencies are not linear then the covariance matrix may not pick it up. There are well known and numerous examples so I will not repeat them again.

Let us take a different approach. The definition of independent events is the following equality:

**Pr**(A and B)=**Pr**(A)**Pr**(B).

Hence for dependent events we should have inequality. A simple measure of such disparity is an absolute value of difference of the expressions on the right hand side and on the left hand side:

|**Pr**(A and B)−**Pr**(A)**Pr**(B)|.

Since in Data Science we work with probability estimations, then the true equality in the first formula is not likely anyway. The question is, how far from zero may be the difference in the second formula for us to believe that considered variables are dependent?

Well, in Data Science we can estimate bounds of a particular value with confidence intervals computed from a given data. For example with R it can be done with package “boot” and with python it is done with “scikits.bootstrap”. Thus confidence intervals of **Pr**(A and B), **Pr**(A) and **Pr**(B) can be estimated with desired degree of probability. What is left to work out is a confidence interval of a product, **Pr**(A)**Pr**(B)

To estimate bounds for the product we can use a standard approach from Numerical Analysis which is used to compute an accrued error of calculation caused by truncation errors.

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

**Technical**

- Free Books and Resources for DSC Members
- Learn Machine Learning Coding Basics in a weekend
- New Machine Learning Cheat Sheet | Old one
- Advanced Machine Learning with Basic Excel
- 12 Algorithms Every Data Scientist Should Know
- Hitchhiker's Guide to Data Science, Machine Learning, R, Python
- Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Pyth...
- How to Automatically Determine the Number of Clusters in your Data
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- Fast Combinatorial Feature Selection with New Definition of Predict...
- 10 types of regressions. Which one to use?
- 40 Techniques Used by Data Scientists
- 15 Deep Learning Tutorials
- R: a survival guide to data science with R

**Non Technical**

- Advanced Analytic Platforms - Incumbents Fall - Challengers Rise
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- How to Become a Data Scientist - On your own
- 16 analytic disciplines compared to data science
- Six categories of Data Scientists
- 21 data science systems used by Amazon to operate its business
- 24 Uses of Statistical Modeling
- 33 unusual problems that can be solved with data science
- 22 Differences Between Junior and Senior Data Scientists
- Why You Should be a Data Science Generalist - and How to Become One
- Becoming a Billionaire Data Scientist vs Struggling to Get a $100k Job
- Why do people with no experience want to become data scientists?

**Articles from top bloggers**

- Kirk Borne | Stephanie Glen | Vincent Granville
- Ajit Jaokar | Ronald van Loon | Bernard Marr
- Steve Miller | Bill Schmarzo | Bill Vorhies

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives**: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central