The number of R packages associated cool new tricks available continues to grow every month. To understand the current state of R packages on CRAN, I ran some code provided by Gergely Daróczi on Github . As of today there have been almost 14,000 R packages published on CRAN and the rate of publishing appears to be growing at an almost exponential trend.Additionally, there are even more packages available on sources like Github, Bioconductor, Bitbucket and more.

Given the amount of tools the average data person uses daily, we need to reduce the hurdles to as many "easy tasks" as possible. To help other poor souls that don't want to think too hard when struggling to install R packages referenced in tutorials or other media, I've put together a simple flow chart. The basic troubleshooting guide can be followed in the flow chart. However additional detailed instructions and links can be found below the image.

**Is the package available on CRAN? **

- Unfortunately CRAN does not have a search but you can usually find the package by googling "CRAN R <package name>"

**Do you have the right version of base R? **

- To identify your R version, execute the command "Version" and the output will indicate your installed base R version. In the screenshot, I have version 3.4.3
- To install a new version of R, visit their download page

- If the install worked, you will get a message along the lines of "The downloaded binary packages are in <filepath> "

**Install via R-Studio package interface**

- This is a very handy tip which prevents silly typos. The tip was given by Albert Kim in reply to my #rstats tweet. He documents this in his awesome book: Modern Dive An Introduction to Statistical and Data Sciences via R.

**Locate the package repo and install via devtools**

- Typically the easiest way to locate the package repo is by googling "r package <package name>". In the case of the emo R package I found it here: https://github.com/hadley/emo
- Install the package from the repo via devtools. This simply involves installing and loading the devtools package and then executing the appropriate "install_" command from the docs. In the case of the emo package, the following code will work.

install.packages("devtools")

library(devtools)

install_github("hadley/emo")

# OR MAC and Linux users can simply do:

devtools::install_github("hadley/emo")

Thank you for taking the time to read this guide. I certainly hope that it will help people spend less time thinking about package install debugging and leave more time for fun data analysis and exploration. Please feel free to let me know your thoughts in the comments or on twitter. Thanks!

Original Post can be found here.

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

**Technical**

- Free Books and Resources for DSC Members
- Learn Machine Learning Coding Basics in a weekend
- New Machine Learning Cheat Sheet | Old one
- Advanced Machine Learning with Basic Excel
- 12 Algorithms Every Data Scientist Should Know
- Hitchhiker's Guide to Data Science, Machine Learning, R, Python
- Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Pyth...
- How to Automatically Determine the Number of Clusters in your Data
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- Fast Combinatorial Feature Selection with New Definition of Predict...
- 10 types of regressions. Which one to use?
- 40 Techniques Used by Data Scientists
- 15 Deep Learning Tutorials
- R: a survival guide to data science with R

**Non Technical**

- Advanced Analytic Platforms - Incumbents Fall - Challengers Rise
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- How to Become a Data Scientist - On your own
- 16 analytic disciplines compared to data science
- Six categories of Data Scientists
- 21 data science systems used by Amazon to operate its business
- 24 Uses of Statistical Modeling
- 33 unusual problems that can be solved with data science
- 22 Differences Between Junior and Senior Data Scientists
- Why You Should be a Data Science Generalist - and How to Become One
- Becoming a Billionaire Data Scientist vs Struggling to Get a $100k Job
- Why do people with no experience want to become data scientists?

**Articles from top bloggers**

- Kirk Borne | Stephanie Glen | Vincent Granville
- Ajit Jaokar | Ronald van Loon | Bernard Marr
- Steve Miller | Bill Schmarzo | Bill Vorhies

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives**: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central