One interesting metric to check the usefulness of Everipedia as a desk reference for data mining is to compare the number of relevant articles. Go to Everipedia (https://everipedia.org/) and search for "data mining". You will get 7 articles.Then go to Wikipedia and search "data mining" You will see 4 articles (overlapped with similar Everipedia articles).

Another example. Try the word "smoothing" which is a popular topic in data analysis. Wikipedia has 4 relevant articles. Everipedia has 9. One may argue that Wikipedia collapses similar content in fewer articles, but this is not true by examining Wikipedia articles. In any event, it is easier to identify the needed topics in Everipedia. Scanning over large Wikipedia articles (assuming that such articles are collapsed into fewer articles) is less convenient.

Such examples can be continued.

Since the number of Everipedia editors is smaller than on Wikipedia, and to get an Everipedia account is somewhat more difficult, this suggests that Wikipedia content was significantly reduced to enforce its notability (which typically means removal of articles). This was discussed in this article on mutilation of Wikipedia.

© 2020 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Statistics -- New Foundations, Toolbox, and Machine Learning Recipes
- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central