This article contains phrases taken from the machine learning and analysis world. Data scientists and algorithm engineers will feel more comfortable with reading it although it’s targeted at anyone who is interested in some deep data science learnings. It was written by Ella Gati. Ella is fascinated by machine learning and data science and is excited to be making big data valuable.
Hacking applications such as Freedom, iAP Cracker, iAPFree, etc. allow users to make in-app purchases for free. With these kinds of hacks the player receives the coins, gems, levels or lives they purchased without paying any money. If the game developer did not implement any validation process on the in-app purchases, such as SOOMLA’s fraud protection, the purchases are recorded as real purchases in his system. As a result, the reported revenue may differ greatly from the real revenue (especially in popular games with lots of fraud).
We would like to make reports as accurate as possible, and to be able to communicate to the game developers the real state of their game. We use machine learning and statistical modeling techniques for our solution.
With help from a few big games in the GROW data network we were able to build a model that classifies each purchase as real or fraud, with a very high level of accuracy.
What you will find in this article:
To view the original post, click here. For other articles about machine learning, click here.
Top DSC Resources
Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge
Posted 1 March 2021
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles
You need to be a member of Data Science Central to add comments!
Join Data Science Central