Recurrent Neural Nets (RNN) detect features in sequential data (e.g. time-series data). Examples of applications which can be made using RNN’s are anomaly detection in time-series data, classification of ECG and EEG data, stock market prediction, speech recogniton, sentiment analysis, etc.

This is done by unrolling the data into N different copies of itself (if the data consists of N time-steps) .

In this way, the input data at the previous time steps can be used when the data at timestep is evaluated. If the data at the previous time steps is somehow correlated to the data at the current time step, these correlations are remembered and otherwise they are forgotten.

By unrolling the data, the weights of the Neural Network are shared across all of the time steps, and the RNN can generalize beyond the example seen at the current timestep, and beyond sequences seen in the training set.

This is a very short description of how an RNN works. For people who want to know more, here is some more reading material to get you up to speed. For now, what I would like you to remember is that Recurrent Neural Networks can learn whether there are temporal dependencies in the sequential data, and if there are, which dependencies / features can be used to classify the data. A RNN therefore is ideal for the classification of time-series, signals and text documents.

So, Lets start with implementing RNN’s in Tensorflow and using them to classify signals.

To see the full blog-post click here.

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Statistics -- New Foundations, Toolbox, and Machine Learning Recipes
- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central