*Introduction*

How often are you in a situation where you have 2 alternatives either yes or a no, black or a white, and so on. These are instances where you ‘classify’ your scenario into only two solutions, a number of solutions may vary but usually, they are two solutions. This is what we call as ‘Classification’ we classify the outcomes in a set number of instances usually two. This week at The Datum we have how can we use Neural Networks as the classification model. And once we have the model in hands we will go about prediction using the model and lastly, we will evaluate our model and predictions for its rightness.

*Model Brief*

Today we have a very interesting model to build which can classify breast cancer. Cancer is uncontrolled multiplication of cells. And breast cancer is caused due to the multiplication of cells in the mammary gland that are transformed into malignant cells. They have the ability to detach themselves from the tissues which they are formed and invade into the surroundings due to multiplication. Breast is formed from multiple types of cells that form the breast but, the most common breast cancers are from glandular cells or from those forming the walls of the ducts.

The objective of this model today is to classify the number of benign and malignant classes which form the two most common type of breast cancer. For this model, we will be using the data already present in R named BreastCancer which is available in mlbench package. Using this data we will classify benign and malignant types of breast cancer using neural networks as a classifier.

*Model Data*

The data as mentioned is readily available in R library of mlbench and each variable except the first, is in the form of 11 numerical attributes with values ranging from 0 through 10, with some missing values as well. Following are the data fields of this data set.

**$Id:** *Sample code number*

**$Cl.thickness:** *Clump thickness*

**$Cell.size:** *Uniformity of cell size*

**$Cell.shape:** *Uniformity of cell shape*

**$Marg.adhesion:** *Marginal adhesion*

**$Epith.c.size: ***Single epithelial cell size*

**$Bare.nuclei: ***Bare nuclei*

**$Bl.cromatin: ***Bland chromatin*

**$Normal.nucleoli:** *Normal nucleoli*

**$Mitoses:** *Mitoses*

**$Class:** *Class*

With good amount of information on the model brief and data we are good to implement the Neural Network Classifier model in R. To have an in-depth understanding of Neural Network concepts and functioning visiting the blog *Prediction Analysis with Neural Networks and Linear Regression* is recommended (here), which has all the information needed to understand the working of Neural Networks. To have complete access to this blog with entire listings, data and building the algorithm visit, read here.

© 2020 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Statistics -- New Foundations, Toolbox, and Machine Learning Recipes
- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central