.

Image Source: Statistical Aid

Logistic regression is a statistical technique to find the association between the categorical dependent (response) variable and one or more categorical or continuous independent (explanatory) variable.

We can define the regression model as,

G(probability of event)=β_{0}+β_{1}x_{1}+β_{2}x_{2}+…+β_{k}x_{k}

We determine G using link function as following,

Y={1 ; β_{0}+β_{1}x_{1}+ϵ>0

{0 ; else

There are three types of link fuction. They are,

- Logit
- Normit (probit)
- Gombit

We use it when there exists,

- One Categorical response variable
- One or more explanatory variable.
- No linear relationship between dependent and independent variables.

- The dependent variable should be categorical (binary, ordinal, nominal or count occurrences).
- The predictor or independent variable should be continuous or categorical.
- The correlation among the predictors or independent variable (multi-collinearity) should not be severe but there exists linearity of independent variables and log odds.
- The data should be the representative part of population and record the data in the order its collected.
- The model should provide a good fit of the data.

- In the case of Linear Regression, the outcome is continuous while in the case of logistic regression outcome is discrete (not continuous)
- To perform linear regression, we require a linear relationship between the dependent and independent variables. But to perform Logit we do not require a linear relationship between the dependent and independent variables.
- Linear Regression is all about fitting a straight line in the data while Logit is about fitting a curve to the data.
- Linear Regression is a regression algorithm for Machine Learning while Logit is a classification Algorithm for machine learning.
- Linear regression assumes Gaussian (or normal) distribution of the dependent variable. Logit assumes the binomial distribution of the dependent variable.

*Logit=logistic regression

There are four types of logistic regression. They are,

**Binary logistic:**When the dependent variable has two categories and the characteristics are at two levels such as yes or no, pass or fail, high or low etc. then the regression is called binary logistic regression.**Ordinal logistic:**When the dependent variable has three categories and the characteristics are at natural ordering of the levels such as survey results (disagree, neutral, agree) then the regression is called ordinal logistic regression.**Nominal logistic:**When the dependent variable has three or more categories but the characteristics are not at natural ordering of the levels such as colors (red, blue, green) then the regression is called nominal logistic.**Poisson logistic:**When the dependent variable has three or more categories but the characteristics are the number of time of an event occurs such as 0, 1, 2, 3, …, etc. then the regression is called Poisson logistic regression.

© 2021 TechTarget, Inc. Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central