Python has a unique combination of being both a capable general-purpose programming language as well as being easy to use for analytical and quantitative computing.

Python, along with R, is one of the handiest tools in a data scientist’s arsenal. It’s also one of the simplest computer languages to learn and use, primarily because most concepts can be expressed in fewer lines of code in Python, than in other languages.

Hence, beginners venturing out into the field of data science should definitely familiarise themselves with Python.

Python also offers a slew of active data science libraries and a vibrant community. Below are some of the most commonly used libraries and tools:

**NumPy**

NumPy is an open source extension module for Python. It provides fast precompiled functions for numerical routines. It’s very easy to work with large multidimensional arrays and matrices using NumPy.

Another advantage of NumPy is that you can apply standard mathematical operations on an entire data set without having to write loops. It is also very easy to export data to external libraries that are written in low-level languages (such as C or C++), and for data to then be imported from these external libraries as NumPy arrays.

Even though NumPy does not provide powerful data analysis functionalities, understanding NumPy arrays and array-oriented computing will help you use other Python data analysis tools more effectively.

**SciPy**

SciPy is a Python module that provides convenient and fast N-dimensional array manipulation. It provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. SciPy has modules for optimization, linear algebra, integration and other common tasks in data science.

**Matplotlib**

Matplotlib is a Python module for visualization. Matplotlib allows you to quickly make line graphs, pie charts, histograms and other professional grade figures. Using Matplotlib, you can customise every aspect of a figure. When used within IPython notebook, Matplotlib has interactive features like zooming and panning. It supports different GUI backends on all operating systems, and can also export graphics to common vector and graphic formats like PDF, SVG, JPG, PNG, BMP, GIF, etc.

**Scikit-Learn**

Scikit-Learn is a Python module for machine learning built on top of SciPy. It provides a set of common machine learning algorithms to users through a consistent interface. Scikit-Learn helps to quickly implement popular algorithms on datasets. Have a look at the list of algorithms available in Scikit-Learn, and you will realise that it includes tools for many standard machine-learning tasks (such as clustering, classification, regression, etc.).

**Pandas**

Pandas is a Python module that contains high-level data structures and tools designed for fast and easy data analysis operations. Pandas is built on NumPy and makes it easy to use in NumPy-centric applications, such as data structures with labelled axes. Explicit data alignment prevents common errors that result from misaligned data coming in from different sources.

It is also easy to handle missing data using Python. Pandas is the best tool for doing data munging

**Theano**

Theano is a Python library for numerical computation, and is similar to Numpy. Some libraries such as Pylearn2 use Theano as their core component for mathematical computation. Theano allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.

**NLTK**

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and wrappers for industrial-strength NLP libraries. NLTK has been used successfully as a platform for prototyping and building research systems.

**Statsmodels**

Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.

**PyBrain**

PyBrain is an acronym for “Python-Based Reinforcement Learning, Artificial Intelligence, and Neural Network”. It is an open source library mainly used for neural networks, reinforcement learning and unsupervised learning.

Neural network forms the basis for this library, making it a powerful tool for real-time analytics.

**Gensim**

Gensim is a Python library for topic modeling. It is built on Numpy and Scipy.

These are some of the best libraries I’ve tried or come across. But there are others.

Would you add any other libraries to this list? Do you have experience with any of these? Share your thoughts with the rest of us!

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Statistics -- New Foundations, Toolbox, and Machine Learning Recipes
- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central