Here's a selection from Udacity's website. Initially, I intended to post questions from Google or Microsoft hiring managers and recruiters, but you can find these questions by doing a Google search, or reading the following book:

Anyway, here are some of these questions and topics to discuss during a job interview for a data scientist position. More can be found here, or in this book. Can anyone provide good answers?

- What do you think a data scientist is/does?
- What do you think are the most important skills for a data scientist to have?
- Which machine learning model (classification vs. regression, for example) to use given a particular problem.
- The tradeoffs between different types of classification models. Between different types of regression models.
- How to go about training, testing, and validating results. Different ways of controlling for model complexity.
- How to model a quantity that you can’t directly observe (using Bayesian approaches, for example, and when doing so, how to choose prior distributions).
- The various numerical optimization techniques (maximum likelihood, maximum a posteriori).
- What types of data are important for a particular set of business needs, how you would go about collecting that data.
- Dealing with correlated features in your data set, how to reduce the dimensionality of data.
- Linear/polynomial regression
- Decision trees
- Dimensionality reduction
- Clustering
- Why you chose the model you did, given the problem you were trying to solve.
- What the features of your data were.
- How you tested and validated the results.
- What you got out of the project.
- When you get a new data set, what do you do with it to see if it will suit your needs for a given project?
- How do you handle big data sets — how would you start work on a project with an associated data set that was many tens of GB or larger?
- What’s a project you would want to work on at our company?
- What data would you go after to start working on it?
- What unique skills do you think you’d bring to the team?

**DSC Resources**

- Career: Training | Books | Cheat Sheet | Apprenticeship | Certification | Salary Surveys | Jobs
- Knowledge: Research | Competitions | Webinars | Our Book | Members Only | Search DSC
- Buzz: Business News | Announcements | Events | RSS Feeds
- Misc: Top Links | Code Snippets | External Resources | Best Blogs | Subscribe | For Bloggers

**Additional Reading**

- 50 Articles about Hadoop and Related Topics
- 10 Modern Statistical Concepts Discovered by Data Scientists
- Top data science keywords on DSC
- 4 easy steps to becoming a data scientist
- 13 New Trends in Big Data and Data Science
- 22 tips for better data science
- Data Science Compared to 16 Analytic Disciplines
- How to detect spurious correlations, and how to find the real ones
- 17 short tutorials all data scientists should read (and practice)
- 10 types of data scientists
- 66 job interview questions for data scientists
- High versus low-level data science

Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge

© 2020 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Upcoming DSC Webinar**

**Your Model Will Probably Fail (And How to Prevent it)**- July 9

Data science is more popular than ever, but many data scientists struggle with complicated workflows to run their models as well as how to best communicate the output to less technical stakeholders. Tableau can solve both of these challenges by designing R workflows and creating visualizations that break complicated models down into easily understandable stories.**Register today**.

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Statistics -- New Foundations, Toolbox, and Machine Learning Recipes
- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Upcoming DSC Webinar**

**Your Model Will Probably Fail (And How to Prevent it)**- July 9

Data science is more popular than ever, but many data scientists struggle with complicated workflows to run their models as well as how to best communicate the output to less technical stakeholders. Tableau can solve both of these challenges by designing R workflows and creating visualizations that break complicated models down into easily understandable stories.**Register today**.

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central