Recently, when I was attending AINL-ISMW FRUCT 2015 conference, I found out that Google open-sourced TensorFlow. That is cool, but may provoke some questions. Here, I try to answer some of them.
It is definitely not the same as, say, cloud-based machine-learning service (like, for example, Azure ML is).
It is a machine-learning library using data flow graphs to build models. The main purpose of the library is to create models to solve various NLP and image recognition tasks.
TensorFlow has been created for Deep Learning to let a user create a neural network architecture by himself (or herself, of course). Still, the library allows the user to work with statistical machine learning algorithms. However, it does not provide them out-of-the-box – user has to implement them on his own and TensorFlow provides only tools to do this.
Also, TensorFlow is a second generation machine learning system and it has been created to replace its predecessor called DistBelief.
In TensorFlow all the computations are represented as directed graphs, where the computations themselves (and input/output data as well) are nodes. The edges of the graph are paths, by which the data flows from node to node.
By the way, TensorFlow has its own visualization module called TensorBoard, which can visualize the created model in order to let a user trace the data flow in the model (Captain Obvious to rescue!).
Data in TensorFlow are represented as tensors (multidimensional and dynamically sized data arrays). Actually, tensors flow in the graph from node to node, thus making the name of the library sound logical. Simply speaking, a tensor is a 3D matrix (but it is not a strict mathematical definition, of course!). On a figure below, you may see a tensor in terms of vivisection. Comparing to matrix it has more degrees of freedom regarding data selection and slicing.
It is Apache 2.0 – you may freely use TensorFlow for both research and commercial purposes. Truly nice.
Sure there are!
For example, try this tutorial from official website or explore these examples on GitHub.
Besides, you may taste a simplified TensorFlow interface for scikit-learn fans. It makes a transition form scikit-learn to TensorFlow much more comfortable.
Remember: to work with TensorFlow using Python you must have numpy and matplotlib installed. And, of course, you will need CUDA to perform calculations with GPU.
For some of you it may be interesting if there is any difference between TensorFlow and libraries like Theano, which also can make their own Deep Learning with multi-dimensional arrays and GPU.
Yes, TensorFlow may look like Theano, but:
I hope this short overview will help you to understand or at least guesstimate what TensorFlow is, why it is cool and why you do or do not need it. Comments are welcome!
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles
You need to be a member of Data Science Central to add comments!
Join Data Science Central