*Your Step-By-Step Guide To Learning R Programming.*

Do you want to learn R Programming?

**Do you get overwhelmed by complicated lingo and want a guide that is easy to follow, detailed and written to make the process enjoyable? **

If so, *“R: Easy R Programming for Beginners - Your Step-By-Step Guide To Learning R Programming” *by Felix Alvaro is *THE* book for you!

It covers the most essential topics you must learn to begin programming with R.

With more than two million global users, the R language is rapidly turning into a top programming language specifically in the space of data science as well as statistics. What you are going to learn in this step-by-step beginner’s guide is how to master the fundamentals of such a gorgeous open-source programming language which includes vectors, data frames and lists.

Not only is the language growing in popularity, but the demand for R Programmers is also rising, with skilled programmers getting paid an **average annual salary of $115,000 per year!**

**What Separates This Book From The Rest?**

What separates this book from all the others out there is the approach to teaching. A lot of the books you will stumble upon simply throw information at you, leaving you confused and stuck.

We believe that books of this nature should be easy to grasp and written in jargon-free English you can understand, making you feel confident and allowing you to grasp each topic with ease.

To help you achieve this, the guide has been crafted in a **step-by-step** manner which we feel is the best way for you to learn a new subject, one step at a time. It also includes various **images** to give you assurance you are going in the right direction, as well as having **exercises** where you can proudly practice your newly attained skills.

**You Will Learn The Following:**

- The history of R programming and its benefits
- How to install R & R Studio and work with code editors
- The fundamentals of R syntax
- Function & Arguments
- R Programming with user packages
- Organizing data in Vectors
- Working with Data-Frames and Matrices
- Creating Lists
- Effective coding in R
- Controlling Logical Flow
- Woking with base graphics
- Creating Facetted graphics using Lattice
- And much more!

Find the book, here.

**DSC Resources**

- Career: Training | Books | Cheat Sheet | Apprenticeship | Certification | Salary Surveys | Jobs
- Knowledge: Research | Competitions | Webinars | Our Book | Members Only | Search DSC
- Buzz: Business News | Announcements | Events | RSS Feeds
- Misc: Top Links | Code Snippets | External Resources | Best Blogs | Subscribe | For Bloggers

**Additional Reading**

- What statisticians think about data scientists
- Data Science Compared to 16 Analytic Disciplines
- 10 types of data scientists
- 91 job interview questions for data scientists
- 50 Questions to Test True Data Science Knowledge
- 24 Uses of Statistical Modeling
- 21 data science systems used by Amazon to operate its business
- Top 20 Big Data Experts to Follow (Includes Scoring Algorithm)
- 5 Data Science Leaders Share their Predictions for 2016 and Beyond
- 50 Articles about Hadoop and Related Topics
- 10 Modern Statistical Concepts Discovered by Data Scientists
- Top data science keywords on DSC
- 4 easy steps to becoming a data scientist
- 22 tips for better data science
- How to detect spurious correlations, and how to find the real ones
- 17 short tutorials all data scientists should read (and practice)
- High versus low-level data science

Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

**Technical**

- Free Books and Resources for DSC Members
- Learn Machine Learning Coding Basics in a weekend
- New Machine Learning Cheat Sheet | Old one
- Advanced Machine Learning with Basic Excel
- 12 Algorithms Every Data Scientist Should Know
- Hitchhiker's Guide to Data Science, Machine Learning, R, Python
- Visualizations: Comparing Tableau, SPSS, R, Excel, Matlab, JS, Pyth...
- How to Automatically Determine the Number of Clusters in your Data
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- Fast Combinatorial Feature Selection with New Definition of Predict...
- 10 types of regressions. Which one to use?
- 40 Techniques Used by Data Scientists
- 15 Deep Learning Tutorials
- R: a survival guide to data science with R

**Non Technical**

- Advanced Analytic Platforms - Incumbents Fall - Challengers Rise
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- How to Become a Data Scientist - On your own
- 16 analytic disciplines compared to data science
- Six categories of Data Scientists
- 21 data science systems used by Amazon to operate its business
- 24 Uses of Statistical Modeling
- 33 unusual problems that can be solved with data science
- 22 Differences Between Junior and Senior Data Scientists
- Why You Should be a Data Science Generalist - and How to Become One
- Becoming a Billionaire Data Scientist vs Struggling to Get a $100k Job
- Why do people with no experience want to become data scientists?

**Articles from top bloggers**

- Kirk Borne | Stephanie Glen | Vincent Granville
- Ajit Jaokar | Ronald van Loon | Bernard Marr
- Steve Miller | Bill Schmarzo | Bill Vorhies

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives**: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central