Before you select the best model based on your favorite goodness of fit statistic – Mean Squared Error, Gini, K-S, AUC, or misclassification rate – STOP! Model performance metrics are not a one size fits all measure. As an analyst, selecting the right performance metric might mean the difference between having an exceptionally good result, and having no result.
The classic example: There is only a 3% prevalence of the event of interest in my data. I can build a model that is 97% accurate (3% error rate) that NEVER detects the event of interest! In fact, I don’t even need to build a model to get this result – I can just guess “No” 100% of the time.
CHeck out my blog post at: https://communities.sas.com/docs/DOC-2501
© 2021 TechTarget, Inc.
Powered by
Badges | Report an Issue | Privacy Policy | Terms of Service
Most Popular Content on DSC
To not miss this type of content in the future, subscribe to our newsletter.
Other popular resources
Archives: 2008-2014 | 2015-2016 | 2017-2019 | Book 1 | Book 2 | More
Most popular articles
You need to be a member of Data Science Central to add comments!
Join Data Science Central