9 Steps to Become a Data Scientist from Scratch

Because data sciences and data analytics are such rapidly growing fields, there is a dearth of qualified applicants for the number of jobs available.  This makes data science a promising and lucrative field for anyone with an interest and looking for a new career.


But how do you become a data scientist?


First, the definition of data scientist varies from company to company. There’s no single definition of the term. But in general, a data scientist combines the skills of software engineer with a statistician and throws in a healthy dose of knowledge specific to the industry he or she wants to work in.


Roughly 90 percent of data scientists have at least some college education — all the way up to PhDs and doctoral degrees — but the fields they earn their degrees in vary widely. Some recruiters are even finding that people in the humanities have the necessary creativity and can be taught the other hard skills.


So, barring a data sciences degree program (which are popping up at prestigious universities around the world) what steps do you need to take to become a data scientist?


  1. Brush up on your math and statistics skills.  A good data scientist must be able to understand what the data is telling you, and to do that, you must have solid basic linear algebra, an understanding of algorithms and statistics skills. More advanced mathematics may be required for certain positions, but this is a good place to start.
  2. Understand the concept of machine learning. Machine learning is emerging as the next buzzword but it is inextricably linked to big data. Machine learning uses artificial intelligence algorithms to turn data into value and learn without being explicitly programmed.
  3. Learn to code.  Data scientists must know how to manipulate code in order to tell the computer how to analyse the data. Start with an open source language like Python and go from there.
  4. Understand databases, data lakes and distributed storage.  Data is stored in databases, data lakes or across distributed networks, and how those data repositories are built can often dictate how you can access, use, and analyse that data. Failing to see the big picture or think ahead when you construct your data storage can have far-reaching consequences.
  5. Learn data munging and data cleaning techniques.  Data munging is the process of converting “raw” data to another format that is easier to access and analyse. Data cleaning helps eliminate duplication and “bad” data. Both are essential tools in a data scientist’s toolbox.
  6. Understand the basics of good data visualisation and reporting.  You don’t have to become a graphic designer, but you do need to be well versed in how to create data reports that a lay person — like your manager or CEO — can understand.
  7. Add more tools to your toolbox.  Once you’ve mastered the above skills, it’s time to expand your data science toolbox to include programs like Hadoop, R and Spark. Knowledge of and experience with these tools will set you above a great many data science job applicants.
  8. Practice.  How do you practice data science before you have a job in the field? Develop your own pet project from open source data, enter competitions, network with working data scientists, join a bootcamp, volunteer or intern. The best data scientists will have experience and intuition in the field and be able to show their work to a recruiter.
  9. Become a part of the community.  Follow thought leaders in the industry, read industry blogs and websites, engage, ask questions, and stay abreast of current news and theory.


Sound like a lot?  Well, it is.  Data science isn’t for everyone, but for the interested and the dedicated, it can be incredibly rewarding.  If you don’t have the money to attend a university program, check out the resources on this infographic, which spells out how to accomplish many of these steps with free resources around the web.


What do you think is the most important step to becoming a data scientist? I’d be interested in hearing your thoughts in the comments below.

DSC Resources

Additional Reading

Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge

Views: 62233


You need to be a member of Data Science Central to add comments!

Join Data Science Central

Comment by Hugh Tipping on July 26, 2016 at 1:16pm

I'll add to the kudos. Right to the point with a thorough and concise list. I have shared this.

Comment by VIKAS KR on December 8, 2015 at 8:38am

You followed "KISS" theorem. [Keep It Simple & Short]. I super liked it.

Comment by Josephine Giaimo on October 26, 2015 at 9:57am

Thanks for a great article. I was considering taking the Coursera Data Science certification course to refresh my skills and add a couple of new ones. Do you feel that such a certificate could make a difference in terms of being hired in some related capacity in this growing field? My graduate research involved machine learning and so did my last healthcare IT content development assignment. I imagine that not all data scientists have terminal degrees and make the 300K quoted in the news recently. Can you say a bit about the range of roles? Thank you in advance for your response.

Comment by Prateek Agrawal on October 9, 2015 at 1:56am

Clean and Simple and right way to start the journey ! 

© 2021   TechTarget, Inc.   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service