J.D. Opdyke and Alex Cavallo

In operational risk measurement, the estimation of severity distribution parameters is the main driver of capital estimates, yet this remains a non-trivial challenge for many reasons. Maximum likelihood estimation (MLE) does not adequately meet this challenge because of its well-documented non-robustness to modest violations of idealized textbook model assumptions, specifically that the data are independent and identically distributed (i.i.d.), which is clearly violated by operational loss data. Yet even under i.i.d. data, capital estimates based on MLE are, on average, biased upwards, sometimes dramatically, due to Jensen’s inequality. This overstatement of the true risk profile increases as the heaviness of the severity distribution tail increases, so dealing with data collection thresholds by using truncated distributions, which have thicker tails, increases MLE-related capital bias considerably. In addition, truncation typically induces or augments correlation between a distribution’s parameters, and this exacerbates the non-robustness of MLE. This paper derives influence functions for MLE for a number of severity distributions, both truncated and not, to analytically demonstrate its non-robustness and its sometimes counterintuitive behavior under truncation. Empirical influence functions are then used to compare MLE against robust alternatives such as the Optimally Bias-Robust Estimator (OBRE) and the Cramér-von Mises (CvM) estimator. The ultimate focus, however, is on the economic and regulatory capital estimates generated by these three estimators. The mean adjusted single-loss approximation (SLA) is used to translate these parameter estimates into Value-at-Risk (VaR) based estimates of regulatory and economic capital. The results show that OBRE estimators are very promising alternatives to MLE for use with actual operational loss event data, whether truncated or not, when the ultimate goal is to obtain accurate (non-biased) and robust capital estimates.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1990376

http://www.datamineit.com/DMI_publications.htm

http://www.scribd.com/doc/79110980/J-D-Opdyke-and-Alex-Cavallo-Esti...

Tags: SLA, economic capital, loss distribution, mle, obre, operational risk, robust statistics, severity distribution

© 2019 Data Science Central ® Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Statistics -- New Foundations, Toolbox, and Machine Learning Recipes
- Book: Classification and Regression In a Weekend - With Python
- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions