Subscribe to DSC Newsletter
Vincent Granville
  • Male
  • Issaquah, WA
  • United States
Share on Facebook
Share

Vincent Granville's Friends

  • George F. Hart
  • Charles Fox
  • Antoine Bruyns
  • Tahir Irshad Siddiqi
  • Tullio Siragusa
  • Manu Dixit
  • john
  • Gautam Ganesh
  • Dilip MS
  • Eelco van Gelderen
  • Linh Tran
  • Crispin Stromberg
  • Paul Robert Bolton II
  • Rosaria Silipo
  • Matthew Holgate

Vincent Granville's Discussions

Our Solar System Does Not Have a Center

Started Jun 12 0 Replies

Just for the curious. This is not a data science problem.I was reading an article in National Geographic, entitled…Continue

Which classifier has the best performance?

Started this discussion. Last reply by Zhongmin Luo Jun 18. 8 Replies

This question was posted on one of our LinkedIn groups. The author wrote:In practice, given a wide range of classifiers, we often have to choose the one based on performance comparison through…Continue

Two very cool maps: how were their produced?

Started this discussion. Last reply by S Fraser May 12. 12 Replies

We received a request to identify the source for the two cool maps below. I did a Google Image Search and found the source for one of them, but for the other one the map seems to have disappeared…Continue

Coverage problem for cell phone towers

Started this discussion. Last reply by Thought May 21. 2 Replies

This is an interesting mathematical challenge to help solve a big business problem. Where to put the cell towers to achieve (say) a 95% coverage of a specific area. By coverage, I mean that 95% of…Continue

Gifts Received (3)

 

Vincent Granville's Page

Profile Information

Short Bio
Well rounded, visionary data science executive with broad spectrum of domain expertise, technical knowledge, and proven success in bringing measurable added value to companies ranging from startups to fortune 100, across multiple industries (finance, Internet, media, IT, security), domains (data science, operations research, machine learning, computer science, business intelligence, statistics, applied mathematics, growth hacking, IoT) and roles (data scientist, founder, CFO, CEO, HR, product development, marketing, media buyer, operations, management consulting).

Vincent developed and deployed new techniques such as hidden decision trees (for scoring and fraud detection), automated tagging, indexing and clustering of large document repositories, black-box, scalable, simple, noise-resistant regression known as the Jackknife Regression (fit for black-box, real-time or automated data processing), model-free confidence intervals, bucketisation, combinatorial feature selection algorithms, detecting causation not correlations, automated exploratory data analysis with data dictionaries, data videos as a visualization tool, automated data science, and generally speaking, the invention of a set of consistent robust statistical / machine learning techniques that can be understood, implemented, interpreted, leveraged and fine-tuned by the non-expert. Vincent also invented many synthetic metrics (for instance, predictive power and L1 goodness-of-fit) that work better than old-fashioned stats, especially on badly-behaved sparse big data. Some of these techniques have been implemented in a Map-Reduce Hadoop-like environment. Some are concerned with identifying true signal in an ocean of noisy data.

Vincent is a former post-doctorate of Cambridge University and the National Institute of Statistical Sciences. He was among the finalists at the Wharton School Business Plan Competition and at the Belgian Mathematical Olympiads. Vincent has published 40 papers in statistical journals (including Journal of Number Theory, IEEE Pattern analysis and Machine Intelligence, Journal of the Royal Statistical Society, Series B), a Wiley book on data science, and is an invited speaker at international conferences. He also holds a few patents on scoring technology, and raised $6 MM in VC funding for his first startup. Vincent also created the first IoT platform to automate growth and content generation for digital publishers, using a system of API's for machine-to-machine communications, involving Hootsuite, Twitter, and Google Analytics.

Vincent's profile is accessible here and includes top publications, presentations, and work experience with Visa, Microsoft, eBay, NBC, Wells Fargo, and other organisations.

Follow me on Twitter at @AnalyticBridge.
My Web Site Or LinkedIn Profile
http://www.linkedin.com/in/vincentg
Field of Expertise
Analytics, Big Data, Data Science
Professional Status
C-Level
Years of Experience:
15
Your Company:
Data Science Central, AnalyticBridge
Industry:
Internet
Your Job Title:
Executive Data Scientist, Co-Founder
How did you find out about DataScienceCentral?
Tim Matteson
Interests:
Networking, New venture, Recruiting, Other
What is your Favorite Data Mining or Analytical Website?
http://www.datasciencecentral.com
What Other Analytical Website do you Recommend?
http://www.analyticbridge.com

Bio

Well rounded, visionary data scientist with broad spectrum of domain expertise, technical knowledge, and proven success in bringing measurable added value to companies ranging from startups to fortune 100, across multiple industries (finance, Internet, media, IT, security) and domains (data science, operations research, machine learning, computer science, business intelligence, statistics, applied mathematics, growth hacking, IoT).

Vincent developed and deployed new techniques such as hidden decision trees (for scoring and fraud detection), automated tagging, indexing and clustering of large document repositories, black-box, scalable, simple, noise-resistant regression known as the Jackknife Regression (fit for black-box, real-time or automated data processing), model-free confidence intervals, bucketisation, combinatorial feature selection algorithms, detecting causation not correlations, and generally speaking, the invention of a set of consistent robust statistical / machine learning techniques that can be understood, implemented, interpreted, leveraged and fine-tuned by the non-expert. Vincent also invented many synthetic metrics (for instance, predictive power and L1 goodness-of-fit) that work better than old-fashioned stats, especially on badly-behaved sparse big data. Some of these techniques have been implemented in a Map-Reduce Hadoop-like environment. Some are concerned with identifying true signal in an ocean of noisy data.

Vincent is a former post-doctorate of Cambridge University and the National Institute of Statistical Sciences. He was among the finalists at the Wharton School Business Plan Competition and at the Belgian Mathematical Olympiads. Vincent has published 40 papers in statistical journals and is an invited speaker at international conferences. Vincent also created the first IoT platform to automate growth and content generation for digital publishers, using a system of API's for machine-to-machine communications, involving Hootsuite, Twitter, and Google Analytics.

Vincent's profile is accessible at http://bit.ly/1jWEfMP and includes top publications, presentations, and work experience with Visa, Microsoft, eBay, NBC, Wells Fargo, and other organisations.

Latest Activity

James Lucas liked Vincent Granville's blog post Data Science and Machine Learning Without Mathematics
2 hours ago
Michael M. Moon, PhD liked Vincent Granville's blog post How can organizations successfully convert big data into real-world decisions?
4 hours ago
Martin Geovanny Zhindon Mora liked Vincent Granville's blog post Difference between Machine Learning, Data Science, AI, Deep Learning, and Statistics
4 hours ago
Martin Geovanny Zhindon Mora liked Vincent Granville's blog post Data Science and Machine Learning Without Mathematics
4 hours ago
Vincent Granville posted blog posts
5 hours ago
Mandar Deshpande liked Vincent Granville's blog post Data Science and Machine Learning Without Mathematics
13 hours ago
Avinash Para liked Vincent Granville's blog post Invitation to join Data Science Central
19 hours ago
Okan ALTUNAKAR liked Vincent Granville's blog post 40 Techniques Used by Data Scientists
yesterday
Vincent Granville posted a blog post

Book: Mastering Machine Learning with Python in Six Steps

A Practical Implementation Guide to Predictive Data Analytics Using PythonCovers basic to advanced topics in an easy step-oriented mannerConcise on theory, strong focus on practical and hands-on approachExplores advanced topics, such as Hyper-parameter tuning, deep natural language processing, neural network and deep learningDescribes state-of-art best practices for model tuning for better model accuracyAbout The Book:…See More
yesterday
Giles Crouch liked Vincent Granville's blog post Six Great Articles About Quantum Computing and HPC
Saturday
Vincent Granville posted a blog post

Weekly Digest, June 26

Monday newsletter published by Data Science Central. Previous editions can be found here.  The contribution flagged with a + is our selection for the picture of the week.AnnouncementThe …See More
Saturday
Thaddeus Neil Cummins liked Vincent Granville's blog post 40 Techniques Used by Data Scientists
Friday
pieter ten have liked Vincent Granville's blog post Learn Python in 3 days : Step by Step Guide
Friday
Russell Wong commented on Vincent Granville's blog post Salary history and career path of a data scientist
"How did you make the decision as your are a statistician?"
Friday
Abhishek Sharma liked Vincent Granville's blog post Six Great Articles About Quantum Computing and HPC
Friday
Abhishek Sharma liked Vincent Granville's group Tutorials
Friday

Comment Wall (13 comments)

You need to be a member of Data Science Central to add comments!

Join Data Science Central

At 1:37pm on June 23, 2016, Bill Bahl said…

Dr. Granville,

I enjoyed your white paper on Building Dashboards that Flow and could not agree more with minimalism. One thing that seems to be missing from the dashboard packages I've seen is control charts.  At least for the process owner, my personal opinion is a control chart should be the first chart.  If the process is not stable and predicable, statistical analysis seems futile.  Before I retired (two months ago) we started including these in the process owners' LEAN PIT boards.  We generated them in Minitab.  It only takes a few clicks once the data is paste into Minitab.  Bill Bahl

At 12:05pm on February 11, 2016, Dean Pangelinan said…

Dr. Granville,

Regarding the passerelle options for the Data Science certification program, does the notation of "IEEE Computer Science Society - Member" refer to Associate Membership in the IEEE Computer Society, or to full IEEE Membership with additional membership in the IEEE Computer Science Society?

Please advise, at your earliest convenience.

--  Dean Pangelinan

At 5:05pm on June 21, 2015, Sankara Kumaravel gave Vincent Granville a gift
Gift
Dear Dr.Vincent, Thanks for preserving such a nice professional web page for Data Analytics, this is really help for the novice like me.
At 5:28am on June 15, 2015, Lissy Able said…

Hi Vincent,

Can you suggest some points or links about serious data quality issue with the information pulled.

Thanks

Lissy

At 3:38pm on March 11, 2015, Donald Tynes said…

Vincent,

I recently was hired as a data scientist. As a new hire, leading the department of Business Intelligence, I am faced with self-posed questions such as, "What do I need to accomplish in the first 5 days?" And, "What should I accomplish in the first month?" And, of course, "How do I develop a long-term plan for transforming the business into a data-driven organization?" To make the problem of determining how I should focus my attention even more complicated, I have a single employee whom I want to groom to understand the algorithms that I am implementing. Also, I have a CEO who only agreed to hire for this position because the CIO, CFO, and COO encouraged him to do so, but he is highly skeptical of what data science can do for the organization; this complicates matters too because it puts on me a pressure to be dazzling right out-of-the-box. 

I have given these questions considerable thought. I am on day 3 of my new job. I have decided to orient myself on the business' data, query tools, and self-service tools, such as QlikView. I have so many ideas, I have difficulty in choosing a single direction in which I should run. I must note that I want to be significantly impactful while minimizing disruptions in the business' daily functions. To that end, I keep thinking, "run a clustering analysis! Discover the patterns and trends in the company's data to begin the model-building process."

What advice would you give a young data scientist on his 4th day on the job (as it is for me, tomorrow)? 

At 5:22am on December 3, 2014, Harvey Summers said…

I thought you might like this site: http://rpsychologist.com/d3/CI/ 

Interpreting Confidence Intervals

an interactive visualization

At 11:29pm on October 31, 2014, Philippe Van Impe said…

Being from Belgium, you are welcome to join our meetup group about data sciences http://www.meetup.com/Brussels-Data-Science-Community-Meetup/

At 12:21pm on September 25, 2014, Christian Block said…

Hello Vincent, 

I just found DataScienceCentral and wanted to say thank you for putting it together! I'm looking forward to reading through more of the content and checking out your book (which I have ordered).  

Best Regards,

Christian Block

At 6:19am on August 5, 2014, Nasir M. Uddin, Ph.D. said…

Hi Vincent:

This is a great platform to be informed with any latest updates in the field of data science - thank you so much for such a platform.

Regards, Nasir 

At 8:03am on January 8, 2013, Marc Jape said…
Vincent:

This is a great platform that I was not aware of. Keep up the good work.

Regards,
Marc

Vincent Granville's Videos

  • Add Videos
  • View All

Vincent Granville's Blog

13 Great Blogs Posted in the last 12 Months

Posted on June 27, 2017 at 8:00am 0 Comments

This is part of a new series of articles: once or twice a month, we post previous articles that were very popular when first published. These articles are at least 6 month old but no more than 12 month old. The previous digest in this series was posted here a while back. 

13 Great Blogs Posted in the last 12…

Continue

Data Science and Machine Learning Without Mathematics

Posted on June 26, 2017 at 12:30pm 0 Comments

There is a set of techniques covering all aspects of machine learning (the statistical engine behind data science) that does not use any mathematics or statistical theory beyond high school level. So when you hear that some serious mathematical knowledge is required to become a data scientist, this should be taken with a grain of salt.…

Continue

Book: Mastering Machine Learning with Python in Six Steps

Posted on June 26, 2017 at 7:18am 0 Comments

A Practical Implementation Guide to Predictive Data Analytics Using Python

  • Covers basic to advanced topics in an easy step-oriented manner
  • Concise on theory, strong focus on practical and hands-on approach
  • Explores advanced topics, such as Hyper-parameter tuning, deep natural language processing, neural network and deep learning
  • Describes state-of-art best practices for model tuning for better model accuracy

About The Book:…

Continue

Weekly Digest, June 26

Posted on June 24, 2017 at 7:30am 0 Comments

Monday newsletter published by Data Science Central. Previous editions can be found here.  The contribution flagged with a + is our selection for the picture of the week.

Announcement

  • The …
Continue
 
 
 

Follow Us

Videos

  • Add Videos
  • View All

Resources

© 2017   Data Science Central   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service